

ITL PUBLIC SCHOOL **ANNUAL EXAMINATION (2022-23)**

Date: 20.02.2023 **ANSWER KEY** MATHEMATICS (041) - SET A Time: 3 hrs

Class: IX

M. M: 80

	SECTION – A	
1	If x-2 is a factor of polynomial $2x^2 + kx - 15$, then find the value of k? $7/2$	1
2	Without plotting the points indicate the quadrant in which they will lie if:	1
	abscissa is -4 and ordinate is -8. III	
3	The angles of Quadrilateral are in the ratio 1:2:3:4, find the measure of largest angle? 144°	1
4	In \triangle ABC, BC = AB and \angle B = 80°. Then \angle A is equal to50°	1
5	If $\angle ABC = 45^{\circ}$, find the measure of $\angle AOC$. Also state the property used. 90° by degree measure theorem	1
6	Write a rational number between $\sqrt{2}$ and $\sqrt{3}$? 1.6	1
7	Write one postulate and one axiom given by Euclid.	1
	Axiom Things which are equal to the same thing are also equal to one another.	
	Postulates A straight line may be drawn from any point to any other point.	
	A terminated line segment can be produced in a straight line continuously in either	
	direction.	
8	In the given figure, by which congruence criterion are the triangles ACB and ADB congruent? SSS	1
9	Find the coefficient of y in the expansion of $(5-y)^2$ 10	1
10	Subtract $(6\sqrt{2} + 3\sqrt{5})$ from $(3\sqrt{2} - 5\sqrt{5})$. $-3\sqrt{2} - 8\sqrt{5}$	1
11	If the graph of equation $2x + ky = 10k$, intersect the x axis at the point $(5,0)$, then find the value of k. 1	1
12	If the radius of Sphere is 2r, then find its volume in terms of π ? (32 π r3/3)	1
13	If an angle is 14° more than its complement, then find its measure. 38°	1
14	The class mark of the class 85-90 is 87.5	1
15	Determine the degree of the polynomial $(x^3 - 1)(x^3 + 1)$.	1
16	The perimeter of an equilateral triangle is 180 cm. Find its area? 900 $\sqrt{3}$ sq. cm	1
17	Find one solution for the equation $4x - 5y = 6$. (0,-6/5)	1
18	If each side of an equilateral triangle of area A is doubled, then the area of the new triangle is	1
	4 times times the first triangle?	
	Instructions: Choose the correct option in question no 19 and 20.	
19	Assertion: The area of a triangle is 9cm ² whose sides are 3 cm, 4 cm and 5 cm respectively.	1
	Reason: Area of triangle= $\sqrt{s(s-a)(s-b)(s-c)}$	
	d) Assertion (A) is false but reason (R) is true.	
20	Assertion- If POQ is a diameter of a circle and R is a point on the circle then	1
	$ar(\Delta PQR) = \frac{1}{2}(PR \times QR)$.	
	Reason – Angle in a semi - circle is a right angle.	
	a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of	
	assertion (A).	
	SECTION – B	

										<u>_</u>	
21										2	
	If $\angle POR : \angle ROQ = 5 : 7$, find all the angles.										
	5x + 7x = 180										
	12x = 180										
	x = 15										
	75, 105,7	75,105								Q	
22	If $p(y) = y^2 - 5y + 1$ evaluate $p(2) - p(1) + p(\frac{1}{3})$.							2			
23	The heights of 30 students, measured to the nearest centimetre, have been found to be as follows:								2		
	161	150	154	165	168	161	154	162	150	151	
	162	164	171	165	158	154	156	172	160	170	
	153	159	161	170	162	165	166	168	165	164	
	l l									g the class	
	•		_	-		arks for	-		, , , , , , , , , , , , , , , , , , , ,	5 1110 0111100	
24	Frame tw										2
		$\mathbf{x} - \mathbf{y}$			1	υ	<i>S</i> ()	,			
25	Prove that			gram is a	rectangle	e.					2
	Let ABC	D be the	cyclic pa	arallelogi	am.						
	We know	v that op	posite an	gles of a	parallelo	gram are	e equal.				
	∠A = ∠C	and ∠B	=∠D	. (1)	_		_				
	We know	v that the	e sum of	either pa	ir of opp	osite angl	les of a cy	clic quad	<u> rilateral</u>	is 180°.	
	∠A + ∠C	$C = 180^{\circ} S$	SO ∠A +	$\angle A = 180$	o (From	equation	(1))				
	2∠A = 18	80° Henc	e ∠A = 9	0 °							
	We know	v that if o	ne of the	<u>interior</u>	angles of	f a paralle	elogram i	s 90°, all 1	the other	angles will	
	We know that if one of the <u>interior angles</u> of a parallelogram is 90°, all the other angles will also be equal to 90°.										
	Since all the angles in the parallelogram are 90°, we can say that parallelogram ABCD is										
	a <u>rectan</u>	gle.		_	_				_	D	
		_	_	_)R				A_E		
						BD inters		oint E	130	200	
					$=20^{\circ}$. Fin	nd ∠BAC	•		В	C	
		∠CED=1				100			\)	
	,			interior	angles is	1800					
		=180-50-			DDC .	•		1			
	_					e in same	segment	so must i	oe		
	equal.	∴∠BA	AC=ZCD	B and h			7				
26		1 222				<u> </u>		~			
26					triangles	on the sar	ne base B	C.		A	3
		t ∠ABD							,	\wedge	
		eles ΔAB			(1)				/	\searrow	
					(1)				/		
		eles ABD			(2)				в	\longrightarrow c	
	Then \(\angle CBD = \angle BCD \cdots \)										
	Add (1) and (2) we get										
	ZABC+ZCBD=ZACB+ZBCD Rut AABC and ADBC on same base										
	But ΔABC and ΔDBC on same base										

∴∠ABD=∠ACD

27	Write the coordinate respectively, one ver in the third quadrant. Represent it graphica The vertices of the are O(0,0),A(-5,0),B	tex at the origin ally. rectangle	, the longer si				3	
28	Express 0.777 + 0.4777 in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$. i) Let $x = 0.77777$ $9x = 7 \Rightarrow x = 7/9$ ii) $10x = 4.777$ $100x = 47.77$ $90x = 43$ $x = 43/90$ iii) $113/90$							
29	In a class, the marks	obtained by stu	idents has the	following dis	stribution:		3	
	Marks	0 - 10	10-20	20-30	30-40	40-50		
	No.of students	8	32	18	10	12		
	Draw a histogram fo	r the distributio	_					
	Histogram 2 M	Frequency	Polygon 1 M	•	7. 78			
30	The sides of a triangular plot are in the ratio of 3:5:7 and its perimeter is 300m. Find its area. Sides are 60, 100,140 m S = 150 m Therefore, The Area of the Triangular Plot is $1500\sqrt{3}$ m ² OR If the perimeter of an isosceles triangle is 32cm and the ratio of the equal side to its base is 3:2, then find the area of the triangle? 32 = 3x + 3x + 2x 32 = 8x x = 32/8 x = 4 cm							
	12 cm & 8 cm							
31	A right triangle ABC time it revolved abore cases. r=5cm, l=13cm, h=1 Volume =31πr2h=31 r=12, h=5cm, l=13cm Volume =31π×12×12	nt the side 12 cm 2cm π×5×5×12=100π	m. Find the ra πcm3		s of the solid		3	
		2 10/10/11/0	OR	_ : <u>_</u> -				
	The diameter of the moon is approximately one-fourth of the diameter of the earth. What fraction of the volume of the earth is the volume of the moon?							
	Let d_1 be the diameter of the moon and d_2 and be the diameter of the earth. Let r_1 be the radius of the moon and r_2 be the radius of the earth. $d_1=41d_2$ =2 $r_1=41\times 2r_2$ =1:16							
	d1=41d2 =2	LI 1-41^LFL	SECTIO		-1:10			
32	Prove that the angle point on the remaining Given To prove 1 m	ng part of the ci	n arc at the ce	ntre is double	the angle sub		5	

		1
33	In $\triangle ABC$ and $\triangle DEF$, $AB = DE$, $AB \parallel DE$, $BC = EF$ and	5
	BC EF. Vertices A, B and C are joined to vertices D, E and	
	F, respectively. Show that:	
	(i) quadrilateral ABED is a parallelogram	
	(ii) quadrilateral BEFC is a parallelogram	
	$(iii) \Delta ABC \cong \Delta DEF.$	
	(i) Consider the quadrilateral ABED	
	We have, AB=DE and AB DE	
	One pair of opposite sides are equal and parallel. Therefore	
	ABED is a parallelogram.	
	(ii) In quadrilateral BEFC, we have	
	BC=EF and BC EF. One pair of opposite sides are equal and parallel.therefore ,BEFC is a	
	parallelogram.	
	(iii) AD=BE and AD BE As ABED is a gm (1)	
	and CF=BE and CF BE As BEFC is a gm (2)	
	From (1) and (2), it can be inferred	
	AD=CF and AD CF	
	AD=CF and AD CF	
	One pair of opposite sides are equal and parallel	
	⇒ ACFD is a parallelogram. Since ACFD is parallelogram.	
	AC=DF As Opposite sides of a gm ACFD	
	In triangles ABC and DEF, we have	
	AB=DE (opposite sides of ABED	
	BC=EF (Opposite sides of BEFC	
	CA=FD Opposite. sides of ACFD	
	Using SSS criterion of congruence, △ABC≅△DEF	
34	Simplify using identity:	5
34		3
	a) $(2x - 5y)^3 - (2x + 5y)^3$	
	b) $(-12)^3 + (7)^3 + (5)^3$ -1260.	
	OR	
	Use long division method to factorise the polynomial: $2x^3 - x^2 - 13x - 6$.	
	(2x + 1), (x - 3) and $(x + 2)$.	
35		5
	Simplify: $\frac{7\sqrt{3}}{\sqrt{10} + \sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6} + \sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15} + 3\sqrt{2}}$.	
	SECTION – E	
	Case Study based-1	
36	Picnic in a tent	
	Four friends Rahul, Arun, Ajay and Vijay went for a picnic at a hill	
	station. Due to peak season, they did not get a proper hotel in the city.	
	The weather was fine so they decided to make a conical tent in a park.	
	They were carrying 300 m ² cloth with them. As shown in the figure	
	they made the tent with height 8 m and diameter 12 m. The remaining	
	cloth was used for the floor.	
(i)	What was the slant height of the tent? 10 m	1
(ii)	What was the area of the canvas used for making the tent? 188.4 sq. m	1
(iii)	What was the volume of air present in the tent? 376.8 cu.m	2
	OR	
	Was the canvas sufficient for flooring. Justify your answer.	
	g·	

37	Case Study based-2							
31	Mathematics Teacher draws a straight line AB shown on the blackboard as per the							
	following figure. Now he told Afjal to draw another line CD as in the figure. The teacher told Ajay to mark							
	\angle AOD as 2z. Suraj was told to mark \angle AOC as 4y. Alive made an angle \angle COE = 60° .							
	Bhupinder marked ∠BOE and ∠BOD as y and x respectively. Now, answer the questions:							
(i)	Find the value of y? 30	1						
(ii)	Find the value of x? 90	1						
(iii)	Find the value of $x + z$? 135	2						
	OR							
	Write a pair of vertically opposite angles and linear pair from a given figure?							
	i) AOD and BOC ii) AOD and DOB							
38	Case Study based-3							
	A match and the Old Age Home							
	In a one-day international cricket match between India and England, Sarita decided to donate as much money as to 'ORPHAN AGE HOME' as the runs scored by the first pair of Indian							
	batsmen. Sachin and Rahul were the opener batsmen. The runs scored by Sachin is thrice the run scored by Rahul.							
(i)	Taking x and y as the runs scored by Sachin and Rahul respectively, then represent the given information using linear equation in two variables. $x-3y=0$	1						
(ii)	If Sachin scored 180 runs then, the find the number of runs scored by Rahul? 60	1						
(iii)								
(111)	OR	2						
	If Sarita donates ₹ 180, then how many runs are scored by Rahul and Sachin respectively? 45 and 135							