

ITL PUBLIC SCHOOL ANNUAL EXAMINATION(2023-24)

Date:16.02.24 Class: XI MATHEMATICS(041) – SET A(ANSWERKEY)

Time: 3 hrs M. M: 80

SECTION A (Very Short Answers) : $n \in N$, $a_{n+1} = 3a_n$ and $a_1 = 2$ } in roster form {2,6,18,54,} 15° . $(\sqrt{3} - 1)/(2\sqrt{2})$ of x and y: $(1+i)y^2 + (6+i) = (2+i)x$ $x = 5$, $y = -2$ on the set N of natural numbers defined by 12 , $a \in N$, $b \in N$ }. Find: (i) Domain of R (ii) Range of R {9,6,3},{1,2,3} ality for real x: $\frac{5x-2}{3} - \frac{7x-3}{5} > \frac{x}{4}$ (4, ∞) or of 5 card combinations out of a deck of 52 cards if each selection of 5 king. 4C1 x 48C4 binomial coefficients in the expansion of $(1+x)^n$. 2 ⁿ line, which passes through the origin, and the mid point of the line points $(0, -4)$ and $B(8, 0)$. $-1/2$ of foot of the perpendicular from the point $(3, 4, 5)$ on the y-axis. $\sqrt{34}$ of the given system of inequalities on a number line: $-5x \le 1$ $2 \le x < 6$ The major and minor axes of the ellipse $9x^2 + 4y^2 = 36$. 6,4 $\frac{(x)}{(x)}$ $\frac{1}{7\pi}$ $\frac{(x)}{(x)}$ $\frac{1}{7\pi}$ The mean $\frac{x}{(x)}$
of x and y: $(1+i)y^2 + (6+i) = (2+i)x$ $x = 5, y = -2$ on the set N of natural numbers defined by 12, $a \in N$, $b \in N$ }. Find: (i) Domain of R (ii) Range of R $\{9,6,3\},\{1,2,3\}$ rality for real x: $\frac{5x-2}{3} - \frac{7x-3}{5} > \frac{x}{4}$ $\{4,\infty\}$ re of 5 card combinations out of a deck of 52 cards if each selection of 5 king. $4C1 \times 48C4$ binomial coefficients in the expansion of $(1+x)^n$. 2^n line, which passes through the origin, and the mid point of the line points $(0, -4)$ and $B(8, 0)$. $-1/2$ refoot of the perpendicular from the point $(3, 4, 5)$ on the y-axis. $\sqrt{34}$ not the given system of inequalities on a number line: $-5x \le 1$ $2 \le x < 6$ remajor and minor axes of the ellipse $9x^2 + 4y^2 = 36$. $6,4$ $\frac{x}{x}$ $\frac{1}{\pi}$ $\frac{1}{\pi}$ $\frac{x}{x}$ $\frac{1}{\pi}$ $\frac{1}{\pi}$ $\frac{x}{x}$ $\frac{1}{\pi}$ $\frac{1}{\pi}$ $\frac{1}{\pi}$ $\frac{x^{100}}{100}$, then find $f'(1)$. (100) re of the first 5 prime numbers. $\frac{1}{\pi}$ 1
on the set N of natural numbers defined by 12 , $a \in N$, $b \in N$ }. Find: (i) Domain of R (ii) Range of R $\{9,6,3\},\{1,2,3\}$ hality for real x : $\frac{5x-2}{3} - \frac{7x-3}{5} > \frac{x}{4}$ $(4,\infty)$ and the real x : $\frac{5x-2}{3} - \frac{7x-3}{5} > \frac{x}{4}$ $(4,\infty)$ by the real x : $\frac{4C1 \times 48C4}{4C1 \times 48C4}$ by the real x : $\frac{4C1 \times 48C4}{4C1 \times 48C4}$ by the real x : $\frac{2^n}{100}$ by the real x : $\frac{x^{100}}{100}$, then find $\frac{x^{100}}{100}$ be of the first 5 prime numbers. $\frac{x^{100}}{100}$ be of the first 5 prime numbers. $\frac{x^{100}}{100}$ by the real x : $\frac{x^{100}}{100}$ by the real x
on the set N of natural numbers defined by 12 , $a \in N$, $b \in N$ }. Find: (i) Domain of R (ii) Range of R $\{9,6,3\},\{1,2,3\}$ hality for real x : $\frac{5x-2}{3} - \frac{7x-3}{5} > \frac{x}{4}$ $(4,\infty)$ and the real x : $\frac{5x-2}{3} - \frac{7x-3}{5} > \frac{x}{4}$ $(4,\infty)$ by the real x : $\frac{4C1 \times 48C4}{4C1 \times 48C4}$ by the real x : $\frac{4C1 \times 48C4}{4C1 \times 48C4}$ by the real x : $\frac{2^n}{100}$ by the real x : $\frac{x^{100}}{100}$, then find $\frac{x^{100}}{100}$ be of the first 5 prime numbers. $\frac{x^{100}}{100}$ be of the first 5 prime numbers. $\frac{x^{100}}{100}$ by the real x : $\frac{x^{100}}{100}$ by the real x
rality for real x : $\frac{5x-2}{3} - \frac{7x-3}{5} > \frac{x}{4}$ (4, ∞) For of 5 card combinations out of a deck of 52 cards if each selection of 5 king. $4C1 \times 48C4$ The binomial coefficients in the expansion of $(1+x)^n$. 2^n The line, which passes through the origin, and the mid point of the line points $(0, -4)$ and $B(8, 0)$. $-1/2$ The foot of the perpendicular from the point $(3, 4, 5)$ on the y-axis. $\sqrt{34}$ in of the given system of inequalities on a number line: $-5x \le 1$ $2 \le x < 6$ The major and minor axes of the ellipse $9x^2 + 4y^2 = 36$. $6,4$ $\frac{x}{x}$ x
rality for real x : $\frac{5x-2}{3} - \frac{7x-3}{5} > \frac{x}{4}$ (4, ∞) For of 5 card combinations out of a deck of 52 cards if each selection of 5 king. $4C1 \times 48C4$ The binomial coefficients in the expansion of $(1+x)^n$. 2^n The line, which passes through the origin, and the mid point of the line points $(0, -4)$ and $B(8, 0)$. $-1/2$ The foot of the perpendicular from the point $(3, 4, 5)$ on the y-axis. $\sqrt{34}$ in of the given system of inequalities on a number line: $-5x \le 1$ $2 \le x < 6$ The major and minor axes of the ellipse $9x^2 + 4y^2 = 36$. $6,4$ $\frac{x}{x}$ x
er of 5 card combinations out of a deck of 52 cards if each selection of 5 king. 4C1 x 48C4 binomial coefficients in the expansion of $(1+x)^n$. 2 ⁿ line, which passes through the origin, and the mid point of the line points $(0, -4)$ and $B(8, 0)$ 1/2 foot of the perpendicular from the point $(3, 4, 5)$ on the y-axis. $\sqrt{34}$ in of the given system of inequalities on a number line: $-5x \le 1$ $2 \le x < 6$ The major and minor axes of the ellipse $9x^2 + 4y^2 = 36$. 6,4 $\frac{(x)}{(x)}$ $\frac{1}{\pi}$ $\frac{1}{\pi}$ 1/ π 1 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 1 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 1 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 1 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 1 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 1 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 1 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 1 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 1 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 1 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 1 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 1 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 3 coefficients in the expansion of $(1+x)^n$. 2 ⁿ 4 coefficients in the expansion of $(1+x)^n$. 3 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 3 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 3 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 3 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 3 ⁿ 2 coefficients in the expansion of $(1+x)^n$. 3 ⁿ 2 coefficients
binomial coefficients in the expansion of $(1+x)^n$. 2^n line, which passes through the origin, and the mid point of the line points $(0, -4)$ and $B(8, 0)$. $-1/2$ If foot of the perpendicular from the point $(3, 4, 5)$ on the y-axis. $\sqrt{34}$ in of the given system of inequalities on a number line: $-5x \le 1$ $2 \le x < 6$ The major and minor axes of the ellipse $9x^2 + 4y^2 = 36$. $6,4$ $\frac{(x)}{(x)}$ $\frac{1}{\pi}$ $\frac{x^{100}}{100}$, then find $f'(1)$. (100) The of the first 5 prime numbers. $\frac{1}{100}$ mean $\frac{1}{100}$ mean $\frac{1}{100}$ data $\frac{1}{100}$, $\frac{1}{100}$ is $\frac{1}{100}$. $\frac{1}{100}$ data $\frac{1}{100}$, $\frac{1}{100}$ data $\frac{1}$
line, which passes through the origin, and the mid point of the line points $(0, -4)$ and $B(8, 0)$. $-1/2$ If foot of the perpendicular from the point $(3, 4, 5)$ on the y-axis. $\sqrt{34}$ In of the given system of inequalities on a number line: $-5x \le 1$ $2 \le x < 6$ The major and minor axes of the ellipse $9x^2 + 4y^2 = 36$. $6,4$ $\frac{(x)}{(x)}$ $\frac{1}{\pi}$ $\frac{x^{100}}{100}$, then find $f'(1)$. (100) The of the first 5 prime numbers. The mean = 5.6, Var = 10.24 The data 2, 4, 5, 6, 8, 17 is 23.33, then calculate the variance of 4, 8, 10, 12, 93.32
foot of the perpendicular from the point $(3, 4, 5)$ on the y-axis. $\sqrt{34}$ in of the given system of inequalities on a number line: $-5x \le 1$ $2 \le x < 6$ We major and minor axes of the ellipse $9x^2 + 4y^2 = 36$. $\frac{(x)}{(x)}$ $\frac{1}{\pi}$ $\frac{x^{100}}{100}$, then find $f'(1)$. (100) The of the first 5 prime numbers. The mean = 5.6, Var = 10.24 The data 2, 4, 5, 6, 8, 17 is 23.33, then calculate the variance of 4, 8, 10, 12, 93.32
n of the given system of inequalities on a number line: $-5x \le 1$ $2 \le x < 6$ the major and minor axes of the ellipse $9x^2 + 4y^2 = 36$. 6,4 $\frac{x}{x}$ $\frac{x}{x}$ $\frac{x}{x$
te major and minor axes of the ellipse $9x^2 + 4y^2 = 36$. 6,4 $\frac{f(x)}{f(x)} = \frac{1}{\pi}$ $\frac{f'(x)}{f(x)} = \frac{1}{\pi}$ The image of the find $f'(x) = \frac{1}{\pi}$ (100) The of the first 5 prime numbers. The image of the variance of 4, 8, 10, 12, 93.32
e of the first 5 prime numbers. mean = 5.6, Var = 10.24 data 2, 4, 5, 6, 8, 17 is 23.33, then calculate the variance of 4, 8, 10, 12, 93.32
e of the first 5 prime numbers. mean = 5.6, Var = 10.24 data 2, 4, 5, 6, 8, 17 is 23.33, then calculate the variance of 4, 8, 10, 12, 93.32
e of the first 5 prime numbers. mean = 5.6, Var = 10.24 data 2, 4, 5, 6, 8, 17 is 23.33, then calculate the variance of 4, 8, 10, 12, 93.32
data 2, 4, 5, 6, 8, 17 is 23.33, then calculate the variance of 4, 8, 10, 12, 93.32
persons is selected from two men and two women. What is the probability
ill have one man? $2C1 \times 2C1 / 4C2 = 2/3$
om 1 to 20 are mixed up together and then a ticket is drawn at random. by that the ticket has a number which is a multiple of 3 or 7? 2/5
inite GP is twice the sum of the terms following it, then find the common /3
tions, a statement of assertion (A) is followed by a statement of he correct answer out of the following choices. true and R is the correct explanation of A. true but R is not the correct explanation of A. false.
$x = 8 > 2$, then x ∈ { -1, 0, 1, 2,} when x is an Integer set of the inequality $4x + 3 < 5x + 7$ for all x ∈ R is [4, ∞). C
is a stance of the point $P(x, y, z)$ from the origin $(0, 0, 0)$ is given by is on the x-axis then its y and z coordinates are 0. B

	SECTION B	
21	Prove that: $\frac{\sin 5x - 2\sin 3x + \sin x}{\sin 5x - 2\sin 3x + \sin x} = \tan x.$	2
	$\frac{110 \text{ os } 5x - \cos x}{\cos 5x - \cos x}$	
	$=\frac{2\sin 3x \cos 2x - 2\sin 3x}{\sin 3x \cos 2x - 1}$	
	$-2\sin 3x \sin 2x$ $\sin 3x \sin 2x$	
	$1 \cos 2x = 2\sin^2 x$	
	$= \frac{1 - \cos 2x}{\sin 2x} = \frac{2\sin^2 x}{2\sin x \cos x} = \tan x = \text{R.H.S.}$	
22	Reduce $\frac{(3+i\sqrt{5})(3-i\sqrt{5})}{(\sqrt{3}+\sqrt{2}i)-(\sqrt{3}-i\sqrt{2})}$ in standard form. $-7i/\sqrt{2}$	2
	Reduce $\frac{1}{(\sqrt{3}+\sqrt{2}i)-(\sqrt{3}-i\sqrt{2})}$ in standard form.	
23	Using binomial theorem, prove that $6^n - 5n$ always leaves remainder 1 when divided by 25. $(1+5)^n = {}^{n}C_0 + {}^{n}C_15 + {}^{n}C_25^n + + {}^{n}C_25^n$	2
	i.e. $(6)^n = 1 + 5n + 5^2 {^nC_2} + 5^3 {^nC_3} + + 5^n$	
	i.e. $6^n - 5n = 1 + 5^2 ({}^nC_2 + {}^nC_3 + + 5^{n-2})$	
	or $6^n - 5n = 1 + 25 (^nC_2 + 5.^nC_3 + + 5^{n-2})$	
	or $6^n - 5n = 25k + 1$ where $k = {}^nC_2 + 5 \cdot {}^nC_3 + \dots + 5^{n-2}$.	
	This shows that when divided by 25, $6^n - 5n$ leaves remainder 1.	
24	Evaluate: $\lim_{x \to 0} \frac{\sin 5x - \tan 2x}{3x - \sin^2 x}$	2
	OR	
	Let $f(x)$ be a function defined by $f(x) = \begin{cases} 6x - 6, & x \le 3 \\ 2x - k, & x > 3 \end{cases}$, find k if $\lim_{x \to 3} f(x)$ exists. $\mathbf{k} = -6$	
25	If E and Fare two events such that $P(E) = \frac{1}{4}$, $P(F) = \frac{1}{2}$ and $P(E \text{ and } F) = \frac{1}{8}$ then find	2
	(i) P(E or F) (ii) P (not E and not F). 5/8, 3/8 OR	
	A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn	
	from the box, what is the probability that (i) all will be blue? (ii) at least one will be green? 20C5/60C5 , 1-30C5/60C5	
	SECTION C	
26	(i) Find the domain and range of the real valued function f defined by $f(x) = \frac{1}{\sqrt{9-x^2}}$.	2+1
	(1) Find the domain and range of the real valued function f defined by $f(x) = \frac{1}{\sqrt{9-x^2}}$.	
	Domain: (-3,3) Range: $x = \sqrt{(9y^2-1)} / y$ [1/3,\infty]	
	(ii) For sets A, B and C, using the properties of sets, prove that:	
	$A - (B - C) = (A - B) \cup (A \cap C)$	
27	A GP consists of even number of terms. If the sum of all the terms is 5 times the sum of the	3
	terms occupying the odd places, then find its common ratio.	

	Let the G.P. be T ₁ , T ₂ , T ₃ , T ₄ , T ₂₁ .						
	Number of terms = 2n						
	According to the given condition,						
	$T_1 + T_2 + T_3 + + T_{2n} = 5 [T_1 + T_3 + + T_{2n-1}]$						
	$T_1 + T_2 + T_3 + \dots + T_{2n} - 5 [T_1 + T_3 + \dots + T_{2n-1}] = 0$						
	$T_2 + T_4 + \dots + T_{2n} = 4 [T_1 + T_3 + \dots + T_{2n-1}]$						
	Let the G.P. be a , ar, ar², ar³,						
	$\therefore \frac{ar(r^n - 1)}{r - 1} = \frac{4 \times a(r^n - 1)}{r - 1}$ $\Rightarrow ar = 4a$ $\Rightarrow r = 4$ OR The ratio of the AM and GM of two positive numbers a and b is $m : n$.						
	Show that $a:b = (m + \sqrt{m^2 - n^2}):(m - \sqrt{m^2 - n^2})$						
	A.M = $\frac{a+b}{2}$ and G.M. = \sqrt{ab} Apply componendo and dividend to get the result						
	According to the given condition,						
	$\frac{a+b}{2\sqrt{ab}} = \frac{m}{n}$						
28	Assuming that straight lines work as the plane mirror for a point, find the image of the point $(1, 2)$ in the line $x - 3y + 4 = 0$. $(6/5, 7/5)$	3					
	OR A person standing at the junction of two straight paths represented by the equations $2x-3y+4=0$ and $3x+4y-5=0$ wants to reach the path whose equation is $6x-7y+8=0$ in						
	the least time. Find equation of the path that he should follow. Point of intersection (-1/17, 22/17)						
	Slope of the line (3) = $\frac{6}{7}$						
	: Slope of the line perpendicular to line (3) = $-\frac{1}{\left(\frac{6}{7}\right)} = -\frac{7}{6}$						
	The equation of the line passing through and having a slope of $-rac{7}{6}$ is given by						
	$\left(y - \frac{22}{17}\right) = -\frac{7}{6}\left(x + \frac{1}{17}\right)$ $6(17y - 22) = -7(17x + 1)$ $102y - 132 = -119x - 7$ $119x + 102y = 125$						
	Hence, the path that the person should follow is $119x + 102y = 125$.	2					
29	Prove that: $\cos 2\theta \cos \frac{\theta}{2} - \cos 3\theta \cos \frac{9\theta}{2} = \sin 5\theta \sin \frac{5\theta}{2}$	3					

	$LHS = \frac{1}{2} \left[2\cos 2\theta \cos \frac{\theta}{2} - 2\cos 3\theta \cos \frac{9\theta}{2} \right]$						
	LHS = $\frac{1}{2} \left[\cos \left\{ (2\theta + \theta/2) + \cos (2\theta - \theta/2) \right\} - \left\{ \cos (3\theta + 9\theta/2) + \cos (9\theta/2 - 3\theta) \right\} \right]$						
	[Using: $2 \cos A \cos B = \cos (A + B) + \cos (A - B)$]						
	LHS = $\frac{1}{2} \left[\cos \frac{5\theta}{2} + \cos \frac{3\theta}{2} - \cos \frac{15\theta}{2} - \cos \frac{3\theta}{2} \right]$						
	LHS = $\frac{1}{2} \left[\cos \frac{5\theta}{2} - \cos \frac{15\theta}{2} \right]$ Activate Will Go to Settings 1						
	LHS = $\frac{1}{2} \left[2 \sin \left(\frac{5\theta}{2} + \frac{15\theta}{2} \right) \sin \left(\frac{15\theta}{2} - \frac{5\theta}{2} \right) \right]$						
	LHS = $\sin 5\theta \sin \frac{5\theta}{2} = \text{RHS}$						
30	Find the derivative of $f(x) = x \sin x$ using first principle Xcosx+sinx	3					
31	Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is 0.05 and that Ashima will qualify the examination is 0.10. The probability that both will qualify the examination is 0.02. Find the probability that: (i) both Anil and Ashima will not qualify the exam. (ii) at least one of them will not qualify the exam. (iii) only one of them will quality the exam. (a) The event 'both Anil and Ashima will not qualify the examination' may be expressed as E´∩F´. Since, E´ is 'not E', i.e., Anil will not qualify the examination and F´ is 'not F', i.e. Ashima will not qualify the examination. Also E´∩F´ = (E∪F)´ (by Demorgan's Law)	3					
	Now $P(E \cup F) = P(E) + P(F) - P(E \cap F)$						
	or $P(E \cup F) = 0.05 + 0.10 - 0.02 = 0.13$						
	Therefore $P(E' \cap F') = P(E \cup F)' = 1 - P(E \cup F) = 1 - 0.13 = 0.87$						
	(b) P (atleast one of them will not qualify) = 1 - P(both of them will qualify) = 1 - 0.02 = 0.98						
	(c) The event only one of them will qualify the examination is same as the event either (Anil will qualify, and Ashima will not qualify) or (Anil will not qualify and Ashima will qualify) i.e., $E \cap F'$ or $E' \cap F$, where $E \cap F'$ and $E' \cap F$ are mutually exclusive.						
	Therefore, P(only one of them will qualify) = $P(E \cap F' \text{ or } E' \cap F)$						
	$= P(E \cap F') + P(E' \cap F) = P(E) - P(E \cap F) + P(F) - P(E \cap F)$						
	= 0.05 - 0.02 + 0.10 - 0.02 = 0.11						
	OR On her vacations, Venna visits four cities (A, B, C and D) in a random order. What is the						
	probability that she visits (i) A before B (ii) A either first or second (iii) A first and B last. S = {ABCD, ABDC, ACBD, ACDB, ADBC, ADCB (i) 1/2						
	BACD, BADC, BDAC, BCAD, BCDA (ii) 1/2 CARD, CADD, CRAD, CDAD, CDAD, CDAD, (iii) 1/12						
	CABD, CADB, CBDA, CBAD, CDAB, CDBA DABC, DACB, DBCA, DBAC, DCAB, DCBA}						

XI A 4 of 8

For more info visit: www.aspirationsinstitute.com

	SECTION D	
32	If $\cos \theta = \frac{\cos \alpha \cos \beta}{1 - \sin \alpha \sin \beta}$, prove that one value of $\tan \frac{\theta}{2} = \frac{\tan \frac{\alpha}{2} - \tan \frac{\beta}{2}}{1 - \tan \frac{\alpha}{2} \tan \frac{\beta}{2}}$	5
	$\tan^{2}\frac{\theta}{2} = \frac{1-\cos\theta}{1+\cos\theta}$ $\tan^{2}\frac{\theta}{2} = \frac{1-\frac{\cos\alpha\cos\beta}{1-\sin\alpha\sin\beta}}{\frac{\cos\alpha\cos\beta}{1+\sin\alpha\sin\beta}}$ $\tan^{2}\frac{\theta}{2} = \frac{1-\frac{\cos\alpha\cos\beta}{1-\sin\alpha\sin\beta}}{1-\sin\alpha\sin\beta+\cos\alpha\cos\beta}$ $\tan^{2}\frac{\theta}{2} = \frac{1-\frac{\sin\alpha\sin\beta}{1-\sin\alpha\sin\beta}}{1-\sin\alpha\sin\beta+\cos\alpha\cos\beta}$ $\tan^{2}\frac{\theta}{2} = \frac{1-(\cos\alpha\cos\beta+\sin\alpha\sin\beta)}{1+(\cos\alpha\cos\beta-\sin\alpha\sin\beta)}$ $\tan^{2}\frac{\theta}{2} = \frac{1-(\cos\alpha\cos\beta+\sin\alpha\sin\beta)}{1+(\cos\alpha\cos\beta-\sin\alpha\sin\beta)}$ $\tan^{2}\frac{\theta}{2} = \frac{1-\cos(\alpha-\beta)}{1+\cos(\alpha+\beta)}$ $\tan^{2}\frac{\theta}{2} = \pm \frac{\sin\left(\frac{\alpha-\beta}{2}\right)}{\cos\left(\frac{\alpha+\beta}{2}\right)}$ $\tan\frac{\theta}{2} = \pm \frac{\sin\frac{\alpha}{2}\cos\frac{\beta}{2}-\cos\frac{\alpha}{2}\sin\frac{\beta}{2}}{\cos\frac{\alpha}{2}\cos\frac{\beta}{2}-\sin\frac{\alpha}{2}\sin\frac{\beta}{2}}$	
	$\tan \frac{\theta}{2} = \pm \frac{\tan \frac{\alpha}{2} - \tan \frac{\beta}{2}}{1 - \tan \frac{\alpha}{2} \tan \frac{\beta}{2}}$ OR If $\cos(\theta + \phi) = m\cos(\theta - \phi)$, then prove that $\tan \theta = \frac{1 - m}{1 + m}\cot \phi$	
	$\Rightarrow \frac{\cos(\theta + \phi)}{\cos(\theta - \phi)} = \frac{m}{1}$ Using componendo and dividendo theorem, we get $\frac{\cos(\theta + \phi) + \cos(\theta - \phi)}{\cos(\theta + \phi) - \cos(\theta - \phi)} = \frac{m+1}{m-1}$ $\Rightarrow \frac{2\cos\left(\frac{\theta + \phi + \theta - \phi}{2}\right) \cdot \cos\left(\frac{\theta + \phi - \theta + \phi}{2}\right)}{-2\sin\left(\frac{\theta + \phi + \theta - \phi}{2}\right) \cdot \sin\left(\frac{\theta + \phi - \theta + \phi}{2}\right)} = \frac{m+1}{m-1}$	
22	$\Rightarrow \frac{\cos \theta \cdot \cos \phi}{-\sin \theta \cdot \sin \phi} = \frac{m+1}{m-1} \Rightarrow -\cot \theta \cdot \cot \phi = \frac{m+1}{m-1}$ $\Rightarrow \frac{-\cot \phi}{\tan \theta} = \frac{m+1}{m-1} = -\frac{1+m}{1-m}$ $\Rightarrow \tan \theta = \frac{1-m}{1+m} \cot \phi \cdot \text{Hence proved.}$	-
33	Show that the equation of the line passing through the origin and making an angle of θ with the line $y = mx + c$ is $\frac{y}{x} = \frac{m \pm \tan \theta}{1 \mp m \tan \theta}$.	5

	Let the equation of the line passing through the origin be $y = m_1 x$.									
	If this line makes an angle of 6	9 with line y = n	n <i>x</i> + c, the	en angle 6) is given	by				
	$\therefore \tan \theta = \left \frac{m_1 - m}{1 + m_1 m} \right $ $\Rightarrow \tan \theta = \left \frac{\frac{y}{x} - m}{1 + \frac{y}{x} m} \right $									
	$\Rightarrow \tan \theta = \pm \left(\frac{\frac{y}{x} - m}{1 + \frac{y}{x} m} \right)$									
	$\Rightarrow \tan \theta = \frac{\frac{y}{x} - m}{1 + \frac{y}{x}m} \text{ or } \tan \theta = -\left(\frac{y}{x} - m\right)$	$\frac{\frac{y}{x} - m}{1 + \frac{y}{x}m}$								
	Case I: $\tan \theta = \frac{\frac{y}{x} - \frac{y}{x}}{1 + \frac{y}{x}}$	m m	Co	ıse II: _{tar}	$n\theta = -$	$\frac{\frac{y}{x}-m}{1+\frac{y}{x}m}$				
	$\tan \theta = \frac{\frac{y}{x} - m}{1 + \frac{y}{x}m}$			$\tan \theta = -\left(\frac{1}{1}\right)$	x /					
	$\Rightarrow \tan \theta + \frac{y}{x} m \tan \theta =$	$\frac{y}{x} - m$	\Rightarrow	$\frac{y}{x}(1+m)$	tan θ) =	x m – tan θ				
	\Rightarrow m + tan $\theta = \frac{y}{x} (1 - \frac{y}{x})$	m tan θ)	\Rightarrow	$\frac{y}{x} = \frac{m}{1+r}$	tan θ n tan θ					
	$\Rightarrow \frac{y}{x} = \frac{m + \tan \theta}{1 - m \tan \theta}$		The	erefore,	the rec	juired line i	s given by $\frac{y}{x}$ =	$\frac{m \pm \tan \theta}{1 \mp m \tan \theta}.$		
34	Find the mean, variance	e and stand	dard de	viation	:					5
	Classes 30-40	40-50	50-60			70-80	80-90	90-100		
	Frequency 3	7	12	15		8	3	2		
		$y_i = \frac{x_i - 65}{10}$	y, 2	$f_i y_i$	$f_i y_i^2$					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3	9	-9	27					
	40-50 7 45	-2	4	- 14	28					
	50-60 12 55	-1	1	- 12	12					
	60-70 15 65	0	0	0	0					
	70-80 8 75 80-90 3 85	1 2	1 4	8	8					
	3 83	2	4	6	12					

- 15

N=50

90-100

Therefore
$$\bar{x} = A + \frac{\sum f_i y_i}{50} \times h = 65 - \frac{15}{50} \times 10 = 62$$

Variance
$$\sigma^2 = \frac{h^2}{N^2} \left[N \sum f_i y_i^2 - \left(\sum f_i y_i \right)^2 \right]$$

$$= \frac{(10)^2}{(50)^2} \left[50 \times 105 - (-15)^2 \right]$$

$$=\frac{1}{25}[5250-225]=201$$

and standard deviation $(\sigma) = \sqrt{201} = 14.18$

OR

The mean and standard deviation of 100 observations were calculated as 40 and 5.1 respectively by a student who took by mistake 50 instead of 40 for one observation. Find the correct mean and standard deviation?

Solution Given that number of observations (n) = 100

Incorrect mean
$$(\bar{x}) = 40$$
,

Incorrect standard deviation (σ) = 5.1

We know that
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

i.e.
$$40 = \frac{1}{100} \sum_{i=1}^{100} x_i$$
 or $\sum_{i=1}^{100} x_i = 4000$

Thus the correct sum of observations = Incorrect sum
$$-50 + 40$$

$$=4000-50+40=3990$$

Hence Correct mean =
$$\frac{\text{correct sum}}{100} = \frac{3990}{100} = 39.9$$

Also Standard deviation
$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n^2} \left(\sum_{i=1}^{n} x_i \right)^2}$$

$$= \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - (\bar{x})^2}$$

i.e.
$$5.1 = \sqrt{\frac{1}{100}} \times \text{Incorrect } \sum_{i=1}^{5} x_i^2 - (40)^2$$

or
$$26.01 = \frac{1}{100} \times \text{bicorrect } \sum_{i=1}^{n} x_i^2 - 1600$$

	Therefore Incorrect $\sum_{i=1}^{n} x_i^2 = 100 (26.01 + 1600) = 162601$	
	Now Correct $\sum_{i=1}^{n} x_i^2 = \text{Incorrect } \sum_{i=1}^{n} x_i^2 - (50)^2 + (40)^2$ = $162601 - 2500 + 1600 = 161701$	
	Therefore Correct standard deviation $= \sqrt{\frac{\text{Correct } \sum x_i^2}{n} - (\text{Correct mean})^2}$	
	$= \sqrt{\frac{(61701}{100} - (39.9)^2}$ $= \sqrt{(617.0) - (592.0)} = \sqrt{25} = 5$	
35	Find the derivative of the following functions with respect to x : (i) $\frac{\sin x + \cos x}{\sin x - \cos x}$ (ii) $\frac{5x^3 - 4x^2 + 3}{\sqrt{x}}$ (iii) $x^2 \sin x + \sin^2 x$ (i) $-2/(\sin x - \cos x)^2$ (ii) $25/2 x^{3/2} - 6\sqrt{x} - 3/2x^{-3/2}$ (iii) $x^2 \cos x + 2x \sin x + \sin 2x$	2+2 +1
	SECTION E CASE STUDY QUESTIONS	
36	Out of 7 boys and 5 girls, a team of 7 students is to be formed. Use this data to answer the questions given below: (i) Find the number of ways if the team consists of at least 3 girls. (ii) If exactly 3 girls are selected and are arranged in a row for photograph, find the number of ways in which the girls and the boys can stand together (i) $10x35 + 5x35 + 1x21 = 546$ (ii) Arranging: $2! \times 3! \times 4! = 2x6x24 = 288$ Selecting: 350 Required: $288 \times 350 = 100800$	2+2
37	A man is running a race course such that the sum of distances of 2 flag posts from him is always 26m and the distance between the two flag posts is 10 m. Based on this information, find the: (i) equation of the path $a=13$, $c=5$, $b=12$ $x^2/169 + y^2/144 = 1$ (ii) eccentricity of the path $5/13$ (iii) coordinates of the vertices of the path $(\pm 13,0)$ (iv) coordinates of the foci of the path $(\pm 5,0)$	4
38	A group of students were playing with a pair of dice and were trying to find chances for happening of a particular event. Use this data to find the probability of getting: (i) a doublet 1/6 (ii) two on at least one of the dice 11/36 (iii) odd numbers on both the dice 1/4 (iv) number 3 on one dice and 5 on the other. 1/18	4