

# ITL PUBLIC SCHOOL ANNUAL EXAMINATION(2022-23)(Answer key)

Date:10.02.23 Class: XI

## MATHEMATICS(041) - SET A

Time: 3 hrs M. M: 80

|       | SECTION A Each question carries 1 mark                                                                                                                                                     |   |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
| 1     | Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum                                                                                                       | 1 |  |  |  |  |
|       | number of elements that $A \cup B$ can have. 11                                                                                                                                            |   |  |  |  |  |
| 2     | If p, q be two A.M.'s and G be one G.M. between two numbers, then write G <sup>2</sup> in terms of p                                                                                       |   |  |  |  |  |
|       | and q only. $(2p-q)(2q-p)$                                                                                                                                                                 | 1 |  |  |  |  |
| 3     | Let $f(x)$ be a function defined by $f(x) = \begin{cases} 4x - 5, & \text{if } x \le 2 \\ x - \lambda, & \text{if } x > 2 \end{cases}$ . Find $\lambda$ , if $\lim_{x \to 2} f(x)$ exists1 |   |  |  |  |  |
| 4     | If $f(1) = 1$ , $f'(1) = 2$ , then write the value of $\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$ . =2                                                                           | 1 |  |  |  |  |
|       | Write the least positive integral value of n for which $\left(\frac{1+i}{1-i}\right)^n$ is equal to 1. 4                                                                                   | 1 |  |  |  |  |
| 5     | Write the least positive integral value of n for which $(1-1)$ is equal to 1. 4                                                                                                            | 1 |  |  |  |  |
| 6     | What is the probability that a randomly chosen two digit positive integer is a multiple of 3? 30/90                                                                                        | 1 |  |  |  |  |
| 7     | Find the value of $\sin^2 75^\circ + \sin^2 15^\circ$ 1                                                                                                                                    | 1 |  |  |  |  |
|       | If n is any positive integer, write the value of $\frac{i^{4n+1}-i^{4n-1}}{2}$                                                                                                             |   |  |  |  |  |
| 8     | if it is any positive integer, write the value of $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$                                                                                           | 1 |  |  |  |  |
| 9     | Expand using binomial theorem : $\left(x + \frac{2}{x}\right)^4$ $x^4 + \frac{16}{x^4} + 8x^2 + 24 + \frac{32}{x^2}$                                                                       | 1 |  |  |  |  |
| 10    | Write the set $X = \{1, 1/4, 1/9, 1/16, 1/25,\}$ in set builder form. $1/n^2$ , $n \in N$                                                                                                  | 1 |  |  |  |  |
|       | Solve the following in equations: $\frac{5x-2}{3} - \frac{7x-3}{5} > \frac{x}{4}$ (4,\infty)                                                                                               |   |  |  |  |  |
| 11    | Solve the following in equations: $3 	 5 	 4 	 (4,\infty)$                                                                                                                                 | 1 |  |  |  |  |
| 12    | If ${}^{43}C_{r-6} = {}^{43}C_{3r+1}$ , then find the value of r. $r = 12$                                                                                                                 | 1 |  |  |  |  |
|       | $f(x) = \frac{x^2 - 9}{3}$                                                                                                                                                                 |   |  |  |  |  |
| 13    | Find the range of the function $x-3$ $R-\{6\}$                                                                                                                                             | 1 |  |  |  |  |
| 14    | Find the eccentricity of the hyperbola satisfying the given conditions vertices (0,±3),                                                                                                    |   |  |  |  |  |
|       | Length of conjugate axis is 6. $\sqrt{2}$                                                                                                                                                  | 1 |  |  |  |  |
| 15    | Find the value of $\lambda$ , if the lines $3x - 4y - 13 = 0$ , $8x - 11y - 33 = 0$ and $2x - 3y + \lambda = 0$ are                                                                        | 1 |  |  |  |  |
|       | concurrent7                                                                                                                                                                                |   |  |  |  |  |
| 16    | Find the image of (-2,3,4) in the yz - plane. (2,3,4)                                                                                                                                      | 1 |  |  |  |  |
|       | $\tan \frac{11\pi}{6}$                                                                                                                                                                     | 1 |  |  |  |  |
| 17    | Find the value of $\frac{6}{6}$ $-1/\sqrt{3}$                                                                                                                                              |   |  |  |  |  |
| 18    | Find the distances of the point P (-4,3,5) from y axis. $\sqrt{41}$                                                                                                                        | 1 |  |  |  |  |
| 19    | ASSERTION-REASON BASED QUESTIONS(19,20)                                                                                                                                                    | 1 |  |  |  |  |
| For m | In the following questions a statement of assertion (A) is followed by a statement of                                                                                                      |   |  |  |  |  |

|    | Reason (R). Choose the correct answer out of the following choices.  (a) Both A and R are true and R is the correct explanation of A.  (b) Both A and R are true but R is not the correct explanation of A.  (c) A is true but R is false.  (d) A is false but R is true.                                                                                     |                                                                              |     |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----|--|--|--|
|    | ASSERTION: The number of terms in the ex                                                                                                                                                                                                                                                                                                                      | expansion of $\{(3x + y)^8 - (3x - y)^8\}$ are 4                             |     |  |  |  |
|    | REASON: If n is even then the expansion of                                                                                                                                                                                                                                                                                                                    |                                                                              |     |  |  |  |
|    | (n+2)/2 terms. (c)                                                                                                                                                                                                                                                                                                                                            |                                                                              |     |  |  |  |
| 20 | Assertion (A) The fourth term of a GP is the                                                                                                                                                                                                                                                                                                                  | square of its second term and the first term                                 | 1 1 |  |  |  |
|    | is -3, then its 7th term is equal to -2187.                                                                                                                                                                                                                                                                                                                   | 1                                                                            |     |  |  |  |
|    | Reason (R): the nth term of G.P is a $r^{n-1}$                                                                                                                                                                                                                                                                                                                | (a)                                                                          |     |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                               | TION B                                                                       |     |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                               | swer type-questions (VSA) of 2 marks ea                                      | ch  |  |  |  |
| 21 | Find the equation of the line mid-way between                                                                                                                                                                                                                                                                                                                 |                                                                              | 2   |  |  |  |
|    | 3x + 2y + 6 = 0                                                                                                                                                                                                                                                                                                                                               | on the parametrization of the same                                           |     |  |  |  |
|    | The equations of the lines are                                                                                                                                                                                                                                                                                                                                |                                                                              |     |  |  |  |
|    | $3x + 2y - \frac{7}{3} = 0$ (1)                                                                                                                                                                                                                                                                                                                               |                                                                              |     |  |  |  |
|    | 3x + 2y + 6 = 0(2)                                                                                                                                                                                                                                                                                                                                            |                                                                              |     |  |  |  |
|    | Let the equation of the line mid-way between the parallel lines 1 and 2 be                                                                                                                                                                                                                                                                                    | $ \lambda + \frac{7}{3}  =  \lambda - 6 $                                    |     |  |  |  |
|    | $3x + 2y + \lambda = 0$ (3)<br>Then,                                                                                                                                                                                                                                                                                                                          | 7                                                                            |     |  |  |  |
|    | Distance between the lines 1 and 3 = Distance between the lines 2 and 3 $^{7}$                                                                                                                                                                                                                                                                                | $\lambda + \frac{7}{3} = -\lambda + 6$                                       |     |  |  |  |
|    | $\frac{ \lambda + \frac{7}{3} }{\sqrt{9+4}} = \frac{ \lambda - 6 }{\sqrt{9+4}}$                                                                                                                                                                                                                                                                               | $2\lambda = \frac{11}{3}$                                                    |     |  |  |  |
|    | $ \lambda + \frac{7}{3}  =  \lambda - 6 $                                                                                                                                                                                                                                                                                                                     | $\lambda = \frac{11}{6}$                                                     |     |  |  |  |
|    | $\lambda + \frac{7}{3} = -\lambda + 6$                                                                                                                                                                                                                                                                                                                        | Hence, the equation of the required line is $3x + 2y + \frac{11}{6} = 0$ .   |     |  |  |  |
| 22 | Using binomial theorem, prove that $6^n$ - $5n$                                                                                                                                                                                                                                                                                                               | always leaves the remainder 1 when divide                                    | d 2 |  |  |  |
|    | by 25.                                                                                                                                                                                                                                                                                                                                                        | OR                                                                           |     |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                               |                                                                              | r   |  |  |  |
|    | If a and b are distinct integers, prove that $a^n$ Writing $6^n = (1+5)^n$                                                                                                                                                                                                                                                                                    | ( 1)                                                                         |     |  |  |  |
|    | We know that                                                                                                                                                                                                                                                                                                                                                  | $(6)^{n} - 5n = 1 + \frac{n(n-1)}{2}5^{2} + \dots + 5^{n}$                   |     |  |  |  |
|    | $(a + b)^n = {}^nC_0a^nb^0 + {}^nC_1a^{n-1}b^1 + \dots + {}^nC_na^{n-n}b^n$<br>Putting $a = 1, b = 5$                                                                                                                                                                                                                                                         | $(6)^{n} - 5n = 1 + 5^{2} \left( \frac{n(n-1)}{2} + \dots + 5^{n-2} \right)$ |     |  |  |  |
|    | $(6)^{n} = {}^{n} C_{0} 1^{n} 5^{0} + {}^{n} C_{1} 1^{n-1} 5^{1} + {}^{n} C_{2} 1^{n-2} 5^{2} + \dots + {}^{n} C_{n} 1^{n-n} 5^{n}$                                                                                                                                                                                                                           | $(6)^{n} - 5n = 1 + 25 \left( \frac{n(n-1)}{2} + \dots + 5^{n-2} \right)$    |     |  |  |  |
|    | $= {^{n}} C_{0} 5^{0} + {^{n}} C_{1} 5^{1} + {^{n}} C_{2} 5^{2} + \dots + {^{n}} C_{n} 5^{n}$ $= 1 \times 1 + \frac{n!}{1!(n-1)!} 5^{1} + \frac{n!}{2!(n-2)!} 5^{2} + \dots + 1 \times 5^{n}$                                                                                                                                                                 | $(6)^{n} - 5n = 1 + 25k$                                                     |     |  |  |  |
|    | $= 1 + \frac{\mathbf{n}(\mathbf{n} - 1)!}{1!(\mathbf{n} - 1)!} 5^{1} + \frac{\mathbf{n}(\mathbf{n} - 1)(\mathbf{n} - 2)!}{2!(\mathbf{n} - 2)!} 5^{2} + \dots + 1 \times 5^{n}$ $= 1 + \frac{\mathbf{n}(\mathbf{n} - 1)!}{1!(\mathbf{n} - 1)!} 5^{1} + \frac{\mathbf{n}(\mathbf{n} - 1)(\mathbf{n} - 2)!}{2!(\mathbf{n} - 2)!} 5^{2} + \dots + 1 \times 5^{n}$ | where $k = \frac{n(n-1)}{2} + \dots + 5^{n-2}$                               |     |  |  |  |
|    | $= 1 + n(5) + \frac{n(n-1)}{2}5^2 + \dots + 5^n$                                                                                                                                                                                                                                                                                                              | The above equation is of the form                                            |     |  |  |  |
|    | Dividend = Divisor × Quotient + Remainder  Thus, $(6)^n = 1 + 5n + \frac{n(n-1)}{2}5^2 + \dots + 5^n$ $6^n - 5n = 25k + 1$                                                                                                                                                                                                                                    |                                                                              |     |  |  |  |
|    | $(6)^{n} - 5n = 1 + \frac{n(n-1)}{2}5^{2} + \dots + 5^{n}$ Hence $6^{n} - 5n$ always leave remainder 1 when dividing by 25.                                                                                                                                                                                                                                   |                                                                              |     |  |  |  |

|         | It can be written that $a = a - b + b$<br>$\therefore a^n = \left\{ \left( a - b + b \right)^{n} \right\} = \left[ \left( a - b \right) + b \right]^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |
|         | $= {}^{n}C_{0}(a - b)^{n} + {}^{n}C_{2}(a - b)^{n-1}b + \dots + {}^{n}C_{n-1}(a - b)b^{n-1} + {}^{n}C_{n}b^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |
|         | $= (a - b)^{n} + {}^{n}C_{2} (a - b) b^{n-1}b + \dots + {}^{n}C_{n-1} (a - b) b^{n-1} + b^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |  |  |  |
|         | $\Rightarrow a^{n} - b^{n} = (a - b) \left[ (a - b)^{n-1} + {}^{n}C_{2} (a - b) b^{n-2} b + \dots + {}^{n}C_{n-1} b^{n-1} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |
|         | $a^n - b^n = k (a - b)$<br>$\Rightarrow a^n - b^n = k (a - b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |  |  |  |
|         | where, $k = \left[ (a - b)^{n-1} + {}^{n}C_{2} (a - b) b^{n-2}b + + {}^{n}C_{n-1}b^{n-1} \right]$ is a natural number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |  |  |  |
|         | This shows that $(a - b)$ is a factor of $(a^n - b^n)$ where n is a positive integer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |
| 23      | Evaluate: $\lim_{x \to 5} \frac{x-5}{\sqrt{6x-5} - \sqrt{4x+5}}$ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2               |  |  |  |
|         | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |
|         | Find the value of k, if $\frac{\lim_{x \to 1} \frac{x^4 - 1}{x - 1}}{x - 1} = \lim_{x \to k} \frac{x^3 - k^3}{x^2 - k^2}$ . <b>k= 8/3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |  |  |  |
|         | Find the value of k, if $x-1$ $x-1$ $x^2-k^2$ $k=8/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |  |  |  |
|         | $ \beta - \alpha $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2               |  |  |  |
|         | $\frac{\left \frac{\beta-\alpha}{1-\overline{\alpha}\beta}\right }{1-\overline{\alpha}\beta}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |  |  |  |
| 24      | If $\alpha$ and $\beta$ are different complex numbers with $ \beta  = 1$ , find $ 1 - \alpha\beta $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |  |  |
|         | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |
|         | Find real value of x and y for which the following equalities hold:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |  |  |
|         | $(1+i)y^2 + (6+i) = (2+i)x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |  |  |  |
|         | Ans: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |  |
|         | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |
|         | x = 5, y = 2  or  x = 5, y = -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |
| 25      | Show that the points A (1, 3, 4), B (-1, 6,10), C (-7, 4, 7) and D (-5, 1, 1) are the vertices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2               |  |  |  |
|         | of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |  |  |  |
|         | rhombus. Ans: All sides equal to 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |  |
|         | All 5. All 51045 Cytair to 7  The distance between the points A (1, 3, 4) and C (-7, 4, 7) is AC, $= \sqrt{(1 - (-7))^2 + (3 - 4)^2 + (4 - 7)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |  |  |  |
|         | $-\sqrt{(1-\sqrt{7})^2 + (-3)^2}$ $= \sqrt{8^2 + (-1)^2 + (-3)^2}$ $= \sqrt{64 + 1 + 9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |  |  |  |
|         | = $\sqrt{74}$<br>The distance between the points B (-1, 6, 10) and D (-5, 1, 1) is BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |  |  |  |
|         | $= \sqrt{(-1 - (-5))^2 + (6 - 1)^2 + (10 - 1)^2}$ $= \sqrt{4^2 + 5^2 + 9^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |  |  |  |
|         | $= \sqrt{16 + 25 + 81}$<br>= $\sqrt{112}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |  |  |  |
|         | $=4\sqrt{7}$ this short both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |  |  |  |
|         | lt is clear that,<br>AC ≠ BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |  |  |  |
|         | The diagonals are not equal but all sides are equal. SECTION C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +               |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |
|         | (This section comprises of short answer type questions (SA) of 3 marks each)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.7.1.7         |  |  |  |
|         | Evaluate: (a) $\lim_{x \to 0} \frac{\cot 2x - \cos \cot 2x}{x}$ (b) $\lim_{x \to 0} \frac{\sin 2x + \sin 3x}{2x + \sin 3x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5+1.5         |  |  |  |
| 26      | Evaluate: (a) $x$ (b) $2x + \sin 3x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |  |  |  |
|         | Ans: (a) -1 (b) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |  |  |  |
| 27      | a) Redefine the function: $f(x) =  x - 1  +  x + 6 $ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5+1.5         |  |  |  |
|         | b) Let $A = \{1,2,3,4,5,6\}$ . Let R be a relation on A defined by $\{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b \text{ is } \{(a, b): a,b \in A, b $ |                 |  |  |  |
|         | exactly divisible by a} (i) Write R in roster form (ii) Find the range of R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |
|         | Ans: a) $f(x) = \begin{cases} -2x - 5 & x < -6 \\ 7 & -6 \le x < 1 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |
| For m   | ore info visit: www.aspirationsinstitute.com $x > 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |  |  |  |
| 1 01 11 | ore and visit . www.aspirationsmistitute.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ 3 of <b>Q</b> |  |  |  |

|    | c) Range of $R = \{1,2,3,4,5,6\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
|    | (i) $R = \{(1,1), (1,2), (1,3), (1,4), (1,6), (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (6,6)\}$ $(5,5)$                                                                                                                                                                                                                                                                                                                                                                                                        |   |  |  |  |
| 28 | How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content?  OR  a) A man wants to cut three lengths from a single piece of board of length 100 cm. The second length is to be 5 cm longer than the shortest and third length is to be twice as long as the shortest. What are the possible lengths for the shortest board if third piece is to be at least 5 cm longer than the second. |   |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |  |  |  |
|    | b) Solve: $ 3x-2  \le \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |  |  |  |
|    | Let the quantity of water to be added to solution =x liters.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |  |
|    | $x \in \left[\frac{1}{2}, \frac{5}{6}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |  |  |
| 29 | On her vacations Veena visits four cities A, B, C and D in a random order. What is the probability that she visits.  (i) A before B?  (ii) A before B and B before C?  (iii) A first and B last?  Ans: 12/24 4/24 2/24                                                                                                                                                                                                                                                                                          | 3 |  |  |  |
| 30 | Prove that :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |  |
|    | $2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13} = 0$ <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                              | 3 |  |  |  |
|    | Show that: $\sqrt{2 + \sqrt{2 + \sqrt{2 + 2\cos 8\theta}}} = 2\cos \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |  |  |  |

$$= 2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + 2\cos\left(\frac{3\pi}{13} + \frac{5\pi}{13}\right)\cos\left(\frac{3\pi}{13} - \frac{5\pi}{13}\right)$$

$$= 2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + 2\cos\frac{4\pi}{13}\cos\left(\frac{-\pi}{13}\right)$$

$$= 2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + 2\cos\frac{4\pi}{13}\cos\frac{\pi}{13}$$

$$= 2\cos\frac{\pi}{13}\left[\cos\frac{9\pi}{13} + \cos\frac{4\pi}{13}\right]$$

$$= 2\cos\frac{\pi}{13}\left[2\cos\left(\frac{9\pi}{13} + \frac{4\pi}{13}\right)\right]$$

$$= 2\cos\frac{\pi}{13}\left[2\cos\frac{9\pi}{13} + \cos\frac{4\pi}{13}\right]$$

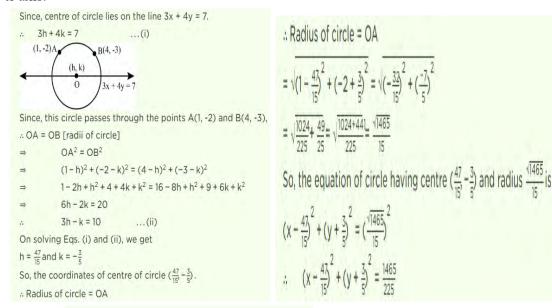
$$= 2\cos\frac{\pi}{13}\left[2\cos\frac{9\pi}{13} + \frac{4\pi}{13}\right]$$

$$= 2\cos\frac{\pi}{13}\left[2\cos\frac{9\pi}{13} + \frac{4\pi}{13}\right]$$

$$= 2\cos\frac{\pi}{13}\left[2\cos\frac{9\pi}{13} + \frac{4\pi}{13}\right]$$

$$= 2\cos\frac{\pi}{13}\left[2\cos\frac{9\pi}{13} + \frac{4\pi}{13}\right]$$

$$= 2\cos\frac{\pi}{13}\left[2\cos\frac{\pi}{2}\cos\frac{5\pi}{26}\right]$$


$$= 2\cos\frac{\pi}{13} \times 2 \times 0 \times \cos\frac{5\pi}{26}$$

$$= 0 = 8 \times 14 \times 9$$

Find the equation of the circle passing through the points (1, -2) and (4, -3) and centre lies on the line 3x + 4y = 7.

#### OR

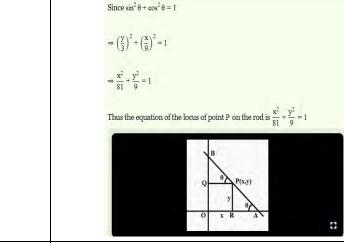
A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact x-axis.



Let AB be the rod making an angle  $\theta$  with positive direction of x-axis and  $P\left(x,y\right)$  be the point on it such that AP = 3cm

Now, 
$$PB = AB - AP = (12 - 3)cm = 9cm (AB = 12cm)$$

Draw PQ  $\perp$  OY and PR  $\perp$  OX


In ∆PBQ,

$$\cos\theta = \frac{PQ}{PB} = \frac{x}{9}$$

In △PRA,

$$\sin \theta = \frac{PR}{P\Delta} = \frac{y}{3}$$

Since  $\sin^2 \theta + \cos^2 \theta = 1$ 



#### **SECTION D**

### (This section comprises of long answer-type questions (LA) of 5 marks each)

The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation if the wrong item is omitted.

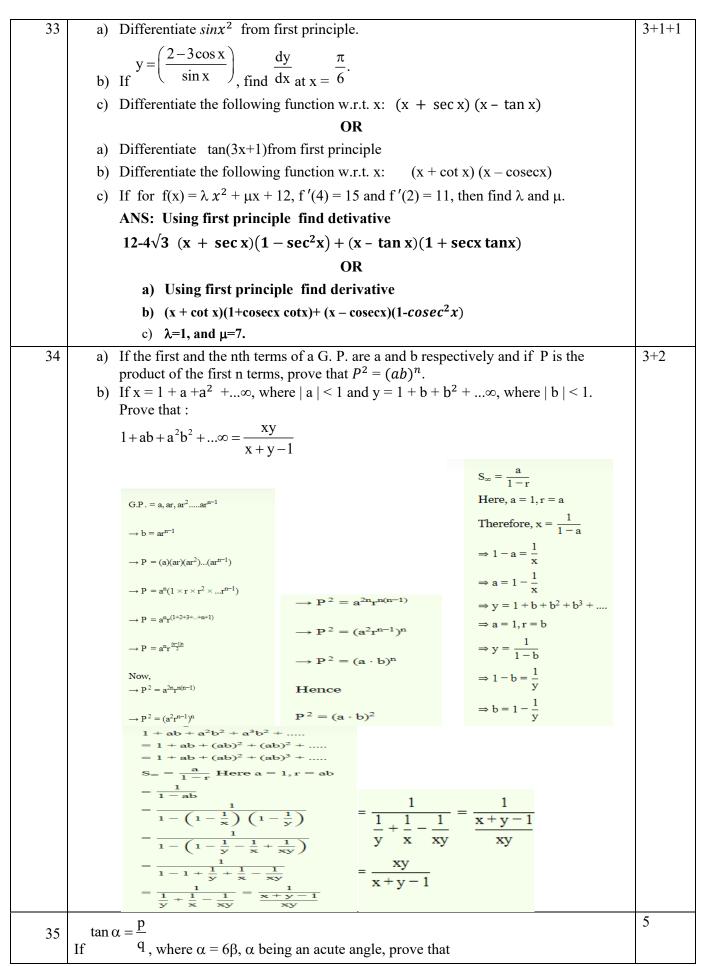
#### OR

The following table gives the distribution of income of 100 families in a village. Calculate the mean and Standard Deviation:

| Income (Rs)     | 0-1000 | 1000-2000 | 2000-3000 | 3000-4000 | 4000-5000 | 5000-6000 |
|-----------------|--------|-----------|-----------|-----------|-----------|-----------|
| No. of Families | 18     | 26        | 30        | 12        | 10        | 4         |

Mean =  $10 \Rightarrow \frac{\sum_{i=1}^{20} x_i}{20} = 10$   $\Rightarrow \sum_{i=1}^{20} x_i = 200$ SD =  $2 \Rightarrow \sigma^2 = 4$   $\Rightarrow \frac{\sum_{i=1}^{20} x_i^2}{20} = (10)^2 = 4$   $\Rightarrow \sum_{i=1}^{20} x_i^2 = 2080$ Thus, incorrect  $(\sum_{i=1}^{20} x_i^2) = 200$  and incorrect  $(\sum_{i=1}^{20} x_i^2) = 2080$ CASE (i) When the wrong item is omitted On omitting 8, we are left with 19 observations.  $\therefore$  correct  $(\sum_{i=1}^{19} x_i) = \text{incorrect}(\sum_{i=1}^{20} x_i) - 8$ = (200 - 8) = 192. Thus, correct  $(\sum_{i=1}^{19} x_i) = 192$   $\therefore$  correct mean =  $\frac{192}{19} = 10.105 \dots$  (i) Also, correct  $(\sum_{i=1}^{19} x_i^2) = \text{incorrect}(\sum_{i=1}^{20} x_i^2) - 64$ = (2080 - 64) = 2016.

- 0 0324 × 1000


| 0 |
|---|
|   |

| Income        | м                | f (m-<br>2500/1000)                          | fd            | fd <sup>2</sup>                       |
|---------------|------------------|----------------------------------------------|---------------|---------------------------------------|
| 0 -<br>1000   | 18               | -2                                           | -36           | 72                                    |
| 1000-         | 1500             | -1                                           | -26           | 26                                    |
| 2000-         | 2500             | o                                            | o             | o                                     |
| 3000-<br>4000 | 350              | +1                                           | +12           | 12                                    |
| 4000-<br>5000 | 4500             | +2                                           | +20           | 40                                    |
| 5000-<br>5000 | 5500             | +3                                           | +12           | 36                                    |
|               |                  | N = 100                                      | $\sum fd=-18$ | $ \sum_{\substack{fd^2\\-186}} fd^2 $ |
| σ = V         | Σfd <sup>2</sup> | $-\left(\frac{\Sigma fd}{N}\right)^2 \times$ | 1000          |                                       |

For more info visit: www.aspirationsinstitute.com

1 3519 x 1000

5



$$\frac{1}{2} \left\{ p \cos ec 2\beta - q \sec 2\beta \right\} = \sqrt{p^2 + q^2}$$

Since, we known that  $\sin\theta = \frac{1}{\csc\theta}$  and  $\cos\theta = \frac{1}{\sec\theta}$  , then we can write LHS of the above equation

$$\frac{1}{2}\{p\csc 2\beta - q\sec 2\beta\} = \sqrt{p^2 + q^2}$$
 as:

$$=\frac{1}{2}\left\{\frac{p}{\sin 2\beta}-\frac{q}{\cos 2\beta}\right\}$$

Take LCM of  $\sin 2 \beta$  and  $\cos 2 \beta$  , then we will get:

$$=\frac{1}{2}\bigg\{\frac{p\cos2\beta-q\sin2\beta}{\sin2\beta\cos2\beta}\bigg\}$$

$$= \frac{p\cos 2\beta - q\sin 2\beta}{2\sin 2\beta\cos 2\beta}$$

We know that  $\sin 2\theta = 2\sin \theta \cos \theta$  , hence we will get

$$=\frac{p\cos 2\beta - q\sin 2\beta}{\sin 4\beta}$$

Now, we will multiply numerator and denominator with  $\sqrt{p^2+q^2}$  , we will get

$$=\frac{\sqrt{p^2+q^2}}{\sin 4\beta} \left\{ \frac{p\cos 2\beta - q\sin 2\beta}{\sqrt{p^2+q^2}} \right\}$$

Now, split  $\sqrt{p^2+q^2}$  over both the numerator term:

$$= \frac{\sqrt{p^2 + q^2}}{\sin 4\beta} \left\{ \frac{p \cos 2\beta}{\sqrt{p^2 + q^2}} - \frac{q \sin 2\beta}{\sqrt{p^2 + q^2}} \right\} \dots (1)$$

Now, we will use triangle law of trigonometry (i.e.  $\sin\theta = \frac{perpendicular}{hypotenuse}$  ,  $\cos\theta = \frac{base}{hypotenuse}$  and

$$\tan \theta = \frac{perpendicular}{base}$$
)

It is given in question that  $\tan \alpha = \frac{p}{q}$  , hence perpendicular of the triangle is 'p' and its base is 'q', then, the

hypotenuse will become  $\sqrt{p^2+q^2}$  , so we can draw the below diagram

$$=\frac{\sqrt{p^2+q^2}}{\sin 4\beta}\{\sin \alpha\cos 2\beta-\cos \alpha\sin 2\beta\}$$

Now, by using the formula  $\sin(A-B)=\sin A\cos B-\sin B\cos A$  , we can rewrite the above equation

as:

$$=\frac{\sqrt{p^2+q^2}}{\sin 4\beta}\sin(\alpha-2\beta)$$

Now, we will put  $\alpha=6\beta$  in the above equation, then we will get

$$=\frac{\sqrt{p^2+q^2}}{\sin 4\beta}\sin(6\beta-2\beta)$$

$$=\frac{\sqrt{p^2+q^2}}{\sin 4\beta}\sin(4\beta)$$

$$= \sqrt{p^2 + q^2} = \mathrm{RHS}$$

For more info visit: www.aspirationsinstitute.com

|    | SECTION E                                                                                     |       |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------|-------|--|--|--|--|
|    | CASE STUDY QUESTIONS                                                                          |       |  |  |  |  |
| 36 | 36 Alka is doing an experiment in which she has to arrange letters of word ALLAHABAD          |       |  |  |  |  |
|    | given in puzzle in order to form words with or without meaning using all letters              |       |  |  |  |  |
|    | a) How many words start and end with letter A? 1260                                           |       |  |  |  |  |
|    | b) How many words can be formed when all A's donot come together? <b>7200</b>                 |       |  |  |  |  |
|    | c) How many words have exactly 3 letters in between H and B. 1050                             |       |  |  |  |  |
| 37 | In a game Ravi told his friend Mohan to make a 4-digit number greater than 5000 from the      | 2+2   |  |  |  |  |
|    | digits 0, 1, 3, 5 and 7, then he asked him to calculate the Probabilty of forming number      |       |  |  |  |  |
|    | divisible by 5 when                                                                           |       |  |  |  |  |
|    | (i) the digits may be repeated 99/249 (ii) the repetition of digits is not allowed. 18/48     |       |  |  |  |  |
| 38 | A person is standing at a point $A$ of a triangular park $ABC$ whose vertices are $A(2, 0)$ , | 1+2+1 |  |  |  |  |
|    | <b>B</b> (3, 4) and <b>C</b> (5, 6). Based on the above information answer the following:-    |       |  |  |  |  |
|    | a) Find the equation of BC. $x-y+1=0$                                                         |       |  |  |  |  |
|    | b) Person A wants to reach on path BC in least time. Find the coordinates of the point        |       |  |  |  |  |
|    | on BC where he meets and the equation of the path he follows . $y+x=2$ (1/2,3/2)              |       |  |  |  |  |
|    | c) Find the shortest distance travelled by <b>A</b> to reach on path <b>BC</b> . $3/\sqrt{2}$ |       |  |  |  |  |